Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
BMC Genomics ; 25(1): 361, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609853

RESUMO

BACKGROUND: Single-cell sequencing techniques are revolutionizing every field of biology by providing the ability to measure the abundance of biological molecules at a single-cell resolution. Although single-cell sequencing approaches have been developed for several molecular modalities, single-cell transcriptome sequencing is the most prevalent and widely applied technique. SPLiT-seq (split-pool ligation-based transcriptome sequencing) is one of these single-cell transcriptome techniques that applies a unique combinatorial-barcoding approach by splitting and pooling cells into multi-well plates containing barcodes. This unique approach required the development of dedicated computational tools to preprocess the data and extract the count matrices. Here we compare eight bioinformatic pipelines (alevin-fry splitp, LR-splitpipe, SCSit, splitpipe, splitpipeline, SPLiTseq-demultiplex, STARsolo and zUMI) that have been developed to process SPLiT-seq data. We provide an overview of the tools, their computational performance, functionality and impact on downstream processing of the single-cell data, which vary greatly depending on the tool used. RESULTS: We show that STARsolo, splitpipe and alevin-fry splitp can all handle large amount of data within reasonable time. In contrast, the other five pipelines are slow when handling large datasets. When using smaller dataset, cell barcode results are similar with the exception of SPLiTseq-demultiplex and splitpipeline. LR-splitpipe that is originally designed for processing long-read sequencing data is the slowest of all pipelines. Alevin-fry produced different down-stream results that are difficult to interpret. STARsolo functions nearly identical to splitpipe and produce results that are highly similar to each other. However, STARsolo lacks the function to collapse random hexamer reads for which some additional coding is required. CONCLUSION: Our comprehensive comparative analysis aids users in selecting the most suitable analysis tool for efficient SPLiT-seq data processing, while also detailing the specific prerequisites for each of these pipelines. From the available pipelines, we recommend splitpipe or STARSolo for SPLiT-seq data analysis.


Assuntos
Biologia Computacional , Transcriptoma , Análise de Dados
2.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485931

RESUMO

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Mamíferos
3.
Toxicon X ; 21: 100185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425752

RESUMO

Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).

4.
Nucleic Acids Res ; 51(20): 10992-11009, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791849

RESUMO

A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.


Assuntos
Núcleo Celular , Receptores Androgênicos , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Receptores Androgênicos/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral
5.
Epigenetics Chromatin ; 16(1): 27, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37349773

RESUMO

Our understanding of the organization of the chromatin fiber within the cell nucleus has made great progress in the last few years. High-resolution techniques based on next-generation sequencing as well as optical imaging that can investigate chromatin conformations down to the single cell level have revealed that chromatin structure is highly heterogeneous at the level of the individual allele. While TAD boundaries and enhancer-promoter pairs emerge as hotspots of 3D proximity, the spatiotemporal dynamics of these different types of chromatin contacts remain largely unexplored. Investigation of chromatin contacts in live single cells is necessary to close this knowledge gap and further enhance the current models of 3D genome organization and enhancer-promoter communication. In this review, we first discuss the potential of single locus labeling to study architectural and enhancer-promoter contacts and provide an overview of the available single locus labeling techniques such as FROS, TALE, CRISPR-dCas9 and ANCHOR, and discuss the latest developments and applications of these systems.


Assuntos
Núcleo Celular , Cromatina , Cromatina/metabolismo , Núcleo Celular/metabolismo , Genoma
6.
Front Immunol ; 14: 1111385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895554

RESUMO

Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Cadeias Pesadas de Imunoglobulinas/genética , Anticorpos Monoclonais
7.
Front Genome Ed ; 4: 1030285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407494

RESUMO

Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.

8.
Proc Natl Acad Sci U S A ; 119(32): e2200879119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925889

RESUMO

The value of anti-CTLA-4 antibodies in cancer therapy is well established. However, the broad application of currently available anti-CTLA-4 therapeutic antibodies is hampered by their narrow therapeutic index. It is therefore challenging and attractive to develop the next generation of anti-CTLA-4 therapeutics with improved safety and efficacy. To this end, we generated fully human heavy chain-only antibodies (HCAbs) against CTLA-4. The hIgG1 Fc domain of the top candidate, HCAb 4003-1, was further engineered to enhance its regulatory T (Treg) cell depletion effect and to decrease its half-life, resulting in HCAb 4003-2. We tested these HCAbs in in vitro and in vivo experiments in comparison with ipilimumab and other anti-CTLA4 antibodies. The results show that human HCAb 4003-2 binds human CTLA-4 with high affinity and potently blocks the binding of B7-1 (CD80) and B7-2 (CD86) to CTLA-4. The results also show efficient tumor penetration. HCAb 4003-2 exhibits enhanced antibody-dependent cellular cytotoxicity function, lower serum exposure, and more potent anti-tumor activity than ipilimumab in murine tumor models, which is partly driven by a substantial depletion of intratumoral Tregs. Importantly, the enhanced efficacy combined with the shorter serum half-life and less systemic drug exposure in vivo potentially provides an improved therapeutic window in cynomolgus monkeys and preliminary clinical applications. With its augmented efficacy via Treg depletion and improved safety profile, HCAb 4003-2 is a promising candidate for the development of next generation anti-CTLA-4 therapy.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Imunoterapia , Neoplasias , Linfócitos T Reguladores , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno CTLA-4/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/farmacologia , Ipilimumab/farmacologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia
9.
Sci Rep ; 12(1): 12835, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896673

RESUMO

The formation of the synovial joint begins with the visible emergence of a stripe of densely packed mesenchymal cells located between distal ends of the developing skeletal anlagen called the interzone. Recently the transcriptome of the early synovial joint was reported. Knowledge about enhancers would complement these data and lead to a better understanding of the control of gene transcription at the onset of joint development. Using ChIP-sequencing we have mapped the H3-signatures H3K27ac and H3K4me1 to locate regulatory elements specific for the interzone and adjacent phalange, respectively. This one-stage atlas of candidate enhancers (CEs) was used to map the association between these respective joint tissue specific CEs and biological processes. Subsequently, integrative analysis of transcriptomic data and CEs identified new putative regulatory elements of genes expressed in interzone (e.g., GDF5, BMP2 and DACT2) and phalange (e.g., MATN1, HAPLN1 and SNAI1). We also linked such CEs to genes known as crucial in synovial joint hypermobility and osteoarthritis, as well as phalange malformations. These analyses show that the CE atlas can serve as resource for identifying, and as starting point for experimentally validating, putative disease-causing genomic regulatory regions in patients with synovial joint dysfunctions and/or phalange disorders, and enhancer-controlled synovial joint and phalange formation.


Assuntos
Osteoartrite , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal , Extremidades , Humanos , Articulações , Sequências Reguladoras de Ácido Nucleico
10.
Nat Commun ; 13(1): 2921, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614127

RESUMO

Human coronavirus OC43 is a globally circulating common cold virus sustained by recurrent reinfections. How it persists in the population and defies existing herd immunity is unknown. Here we focus on viral glycoprotein S, the target for neutralizing antibodies, and provide an in-depth analysis of its antigenic structure. Neutralizing antibodies are directed to the sialoglycan-receptor binding site in S1A domain, but, remarkably, also to S1B. The latter block infection yet do not prevent sialoglycan binding. While two distinct neutralizing S1B epitopes are readily accessible in the prefusion S trimer, other sites are occluded such that their accessibility must be subject to conformational changes in S during cell-entry. While non-neutralizing antibodies were broadly reactive against a collection of natural OC43 variants, neutralizing antibodies generally displayed restricted binding breadth. Our data provide a structure-based understanding of protective immunity and adaptive evolution for this endemic coronavirus which emerged in humans long before SARS-CoV-2.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavirus Humano OC43/metabolismo , Epitopos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
11.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35471062

RESUMO

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/farmacologia , Microscopia Crioeletrônica , Humanos , Glicoproteínas de Membrana , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
12.
Methods Mol Biol ; 2446: 121-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157271

RESUMO

The antibody repertoires of transgenic mice expressing human heavy chain only antibodies (HCAbs) can be retrieved from immune cells after antigen challenge. Compared with genetically modified rodents expressing conventional human antibodies (tetramers consisting of two heavy chains paired with two light chains), there is no chain pairing problem, since each antibody consists of a heavy chain dimer which is solely responsible for antigen binding. HCAbs can be obtained by classical hybridoma fusion, or the generation of phage libraries or eukaryotic cell libraries displaying or secreting HCAbs. Combined transcriptomic/serum proteomic approaches can also be used to determine the repertoire of antibodies, as well as single cell technologies such as the Beacon system that enable capture of immune cells of interest, analysis, and sequencing of antibodies in a short period of time. Here, we describe a protocol for obtaining monoclonal HCAbs from immunized Harbour transgenic mice through the generation and screening of HEK cell libraries of secreted antibodies. The method can be used routinely and is fast and affordable for everyone. Selected VH regions (single domains) are sequenced and individual HCAbs can be produced and purified from the same expression vector that is used for library generation (hIgG1 Fc). They can also be cloned into other expression plasmids and reformatted to equip them with a particular effector function, modify lifespan in serum, or optimize valency and avidity depending on the specific aim.


Assuntos
Anticorpos de Domínio Único , Animais , Humanos , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Camundongos Transgênicos , Proteômica
13.
Front Cell Dev Biol ; 9: 723859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422840

RESUMO

Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.

14.
Methods Mol Biol ; 2351: 165-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382189

RESUMO

Targeted chromatin capture (T2C) is a 3C-based method and is used to study the 3D chromatin organization, interactomes and structural changes associated with gene regulation, progression through the cell cycle, and cell survival and development. Low input targeted chromatin capture (low-T2C) is an optimized version of the T2C protocol for low numbers of cells. Here, we describe the protocol for low-T2C, including all experimental steps and bioinformatics tools in detail.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Biologia Computacional/métodos , Cromatina/química , Cromatina/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica , Biblioteca Gênica , Genômica/métodos , Reprodutibilidade dos Testes
15.
Nat Cell Biol ; 23(8): 881-893, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326481

RESUMO

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Genoma , Células-Tronco Pluripotentes/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Mitose , Células-Tronco Embrionárias Murinas , Mutação , Células-Tronco Pluripotentes/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética
16.
Annu Rev Genomics Hum Genet ; 22: 127-146, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-33951408

RESUMO

Accurate control of gene expression in the right cell at the right moment is of fundamental importance to animal development and homeostasis. At the heart of gene regulation lie the enhancers, a class of gene regulatory elements that ensures precise spatiotemporal activation of gene transcription. Mammalian genomes are littered with enhancers, which are frequently organized in cooperative clusters such as locus control regions and superenhancers. Here, we discuss our current knowledge of enhancer biology, including an overview of the discovery of the various enhancer subsets and the mechanistic models used to explain their gene regulatory function.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Animais , Cromatina , Humanos
17.
J Infect Dis ; 223(12): 2020-2028, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34043806

RESUMO

Effective clinical intervention strategies for coronavirus disease 2019 (COVID-19) are urgently needed. Although several clinical trials have evaluated use of convalescent plasma containing virus-neutralizing antibodies, levels of neutralizing antibodies are usually not assessed and the effectiveness has not been proven. We show that hamsters treated prophylactically with a 1:2560 titer of human convalescent plasma or a 1:5260 titer of monoclonal antibody were protected against weight loss, had a significant reduction of virus replication in the lungs, and showed reduced pneumonia. Interestingly, this protective effect was lost with a titer of 1:320 of convalescent plasma. These data highlight the importance of screening plasma donors for high levels of neutralizing antibodies. Our data show that prophylactic administration of high levels of neutralizing antibody, either monoclonal or from convalescent plasma, prevent severe SARS-CoV-2 pneumonia in a hamster model, and could be used as an alternative or complementary to other antiviral treatments for COVID-19.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , COVID-19/terapia , Pulmão/patologia , SARS-CoV-2/imunologia , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , COVID-19/imunologia , Cricetinae , Modelos Animais de Doenças , Humanos , Imunização Passiva , Pulmão/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Soroterapia para COVID-19
18.
iScience ; 24(3): 102210, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33733070

RESUMO

Transcription factors are key players in a broad range of cellular processes such as cell-fate decision. Understanding how they act to control these processes is of critical importance for therapy purposes. FLI-1 controls several hematopoietic lineage differentiation including megakaryopoiesis and erythropoiesis. Its aberrant expression is often observed in cancer and is associated with poor prognosis. We showed that FLI-1 interacts with the LDB1 complex, which also plays critical roles in erythropoiesis and megakaryopoiesis. In this study, we aimed to unravel how FLI-1 and the LDB1 complex act together in murine erythroleukemia cells and in megakaryocyte. Combining omics techniques, we show that FLI-1 enables the recruitment of the LDB1 complex to regulatory sequences of megakaryocytic genes and to enhancers. We show as well for the first time that FLI-1 is able to modulate the 3D chromatin organization by promoting chromatin looping between enhancers and promoters most likely through the LDB1 complex.

19.
Nat Commun ; 12(1): 1715, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731724

RESUMO

The coronavirus spike glycoprotein, located on the virion surface, is the key mediator of cell entry and the focus for development of protective antibodies and vaccines. Structural studies show exposed sites on the spike trimer that might be targeted by antibodies with cross-species specificity. Here we isolated two human monoclonal antibodies from immunized humanized mice that display a remarkable cross-reactivity against distinct spike proteins of betacoronaviruses including SARS-CoV, SARS-CoV-2, MERS-CoV and the endemic human coronavirus HCoV-OC43. Both cross-reactive antibodies target the stem helix in the spike S2 fusion subunit which, in the prefusion conformation of trimeric spike, forms a surface exposed membrane-proximal helical bundle. Both antibodies block MERS-CoV infection in cells and provide protection to mice from lethal MERS-CoV challenge in prophylactic and/or therapeutic models. Our work highlights an immunogenic and vulnerable site on the betacoronavirus spike protein enabling elicitation of antibodies with unusual binding breadth.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Betacoronavirus/imunologia , Epitopos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Betacoronavirus/classificação , Camelus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reações Cruzadas , Epitopos/química , Epitopos/genética , Humanos , Camundongos , Conformação Proteica , Subunidades Proteicas , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
20.
Biomaterials ; 268: 120580, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321292

RESUMO

Ex vivo gene editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) offers great opportunities to develop new treatments for a number of malignant and non-malignant diseases. Efficient gene-editing in HSPCs has been achieved using electroporation and/or viral transduction to deliver the CRISPR-complex, but cellular toxicity is a drawback of currently used methods. Nanoparticle (NP)-based gene-editing strategies can further enhance the gene-editing potential of HSPCs and provide a delivery system for in vivo application. Here, we developed CRISPR/Cas9-PLGA-NPs efficiently encapsulating Cas9 protein, single gRNA and a fluorescent probe. The initial 'burst' of Cas9 and gRNA release was followed by a sustained release pattern. CRISPR/Cas9-PLGA-NPs were taken up and processed by human HSPCs, without inducing cellular cytotoxicity. Upon escape from the lysosomal compartment, CRISPR/Cas9-PLGA-NPs-mediated gene editing of the γ-globin gene locus resulted in elevated expression of fetal hemoglobin (HbF) in primary erythroid cells. The development of CRISPR/Cas9-PLGA-NPs provides an attractive tool for the delivery of the CRISPR components to target HSPCs, and could provide the basis for in vivo treatment of hemoglobinopathies and other genetic diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Nanopartículas , Sistemas CRISPR-Cas/genética , Células Eritroides , Edição de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...